Trade and Labor Market Outcomes

Elhanan Helpman (joint with Oleg Itskhoki and Stephen Redding)

June 16, 2011
Approaches to Trade

- Traditional explanations of trade:
 - Differences in technology (Ricardo);
 - Differences in factor endowments (Heckscher-Ohlin, Jones, Samuelson).

In the 1980s factor proportions were merged with economies of scale and monopolistic competition (Dixit-Norman, Helpman, Krugman, Lancaster), featuring:

- Similar firms within industries;
- "Universal" exporting by firms.

More recently, firm heterogeneity has been added (Melitz, Bernard-Eaton-Jensen-Kortum):

- Only a fraction of firms export;
- Exporters are bigger and more productive than non-exporters.
Approaches to Trade

Traditional explanations of trade:
- differences in technology (Ricardo);
Approaches to Trade

- Traditional explanations of trade:
 - differences in technology (Ricardo);
 - differences in factor endowments (Heckscher-Ohlin, Jones, Samuelson).
Approaches to Trade

- Traditional explanations of trade:
 - differences in technology (Ricardo);
 - differences in factor endowments (Heckscher-Ohlin, Jones, Samuelson).

- In the 1980s factor proportions were merged with economies of scale and monopolistic competition (Dixit-Norman, Helpman, Krugman, Lancaster), featuring:
 - similar firms within industries;
 - "universal" exporting by firms.

- More recently, firm heterogeneity has been added (Melitz, Bernard-Eaton-Jensen-Kortum):
 - only a fraction of firms export;
 - exporters are bigger and more productive than non-exporters.
Approaches to Trade

- Traditional explanations of trade:
 - differences in technology (Ricardo);
 - differences in factor endowments (Heckscher-Ohlin, Jones, Samuelson).
- In the 1980s factor proportions were merged with economies of scale and monopolistic competition (Dixit-Norman, Helpman, Krugman, Lancaster), featuring:
 - similar firms within industries;
Approaches to Trade

- Traditional explanations of trade:
 - differences in technology (Ricardo);
 - differences in factor endowments (Heckscher-Ohlin, Jones, Samuelson).

- In the 1980s factor proportions were merged with economies of scale and monopolistic competition (Dixit-Norman, Helpman, Krugman, Lancaster), featuring:
 - similar firms within industries;
 - “universal” exporting by firms.
Approaches to Trade

- Traditional explanations of trade:
 - differences in technology (Ricardo);
 - differences in factor endowments (Heckscher-Ohlin, Jones, Samuelson).

- In the 1980s factor proportions were merged with economies of scale and monopolistic competition (Dixit-Norman, Helpman, Krugman, Lancaster), featuring:
 - similar firms within industries;
 - “universal” exporting by firms.

- More recently, firm heterogeneity has been added (Melitz, Bernard-Eaton-Jensen-Kortum):
Approaches to Trade

- Traditional explanations of trade:
 - differences in technology (Ricardo);
 - differences in factor endowments (Heckscher-Ohlin, Jones, Samuelson).

- In the 1980s factor proportions were merged with economies of scale and monopolistic competition (Dixit-Norman, Helpman, Krugman, Lancaster), featuring:
 - similar firms within industries;
 - “universal” exporting by firms.

- More recently, firm heterogeneity has been added (Melitz, Bernard-Eaton-Jensen-Kortum):
 - only a fraction of firms export;
Approaches to Trade

- Traditional explanations of trade:
 - differences in technology (Ricardo);
 - differences in factor endowments (Heckscher-Ohlin, Jones, Samuelson).

- In the 1980s factor proportions were merged with economies of scale and monopolistic competition (Dixit-Norman, Helpman, Krugman, Lancaster), featuring:
 - similar firms within industries;
 - “universal” exporting by firms.

- More recently, firm heterogeneity has been added (Melitz, Bernard-Eaton-Jensen-Kortum):
 - only a fraction of firms export;
 - exporters are bigger and more productive than non-exporters.
Table: Share of manufacturing firms that export, in percent

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Exporting firms, in percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A.</td>
<td>2002</td>
<td>18.0</td>
</tr>
<tr>
<td>Norway</td>
<td>2003</td>
<td>39.2</td>
</tr>
<tr>
<td>France</td>
<td>1986</td>
<td>17.4</td>
</tr>
<tr>
<td>Japan</td>
<td>2000</td>
<td>20.0</td>
</tr>
<tr>
<td>Chile</td>
<td>1999</td>
<td>20.9</td>
</tr>
<tr>
<td>Colombia</td>
<td>1990</td>
<td>18.2</td>
</tr>
</tbody>
</table>

Source: WTO (2008, Table 5)
Table: Share of exports of manufactures, in percent

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Top 1% of firms</th>
<th>Top 10% of firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A.</td>
<td>2002</td>
<td>81</td>
<td>96</td>
</tr>
<tr>
<td>Belgium</td>
<td>2003</td>
<td>48</td>
<td>84</td>
</tr>
<tr>
<td>France</td>
<td>2003</td>
<td>44</td>
<td>84</td>
</tr>
<tr>
<td>Germany</td>
<td>2003</td>
<td>59</td>
<td>90</td>
</tr>
<tr>
<td>Norway</td>
<td>2003</td>
<td>53</td>
<td>91</td>
</tr>
<tr>
<td>U.K.</td>
<td>2003</td>
<td>42</td>
<td>80</td>
</tr>
</tbody>
</table>

Source: WTO (2008, Table 6)
Most of this literature assumes frictionless labor markets.
Most of this literature assumes frictionless labor markets.
However, three prominent features of labor markets are:
Most of this literature assumes frictionless labor markets.

However, three prominent features of labor markets are:

1. substantial differences in workforce composition across firms;

2. variation in wages for workers with the same observed characteristics;

3. unemployment rate varies across industries (see BLS).
Most of this literature assumes frictionless labor markets. However, three prominent features of labor markets are:

1. substantial differences in workforce composition across firms;
2. variation in wages for workers with the same observed characteristics;
Most of this literature assumes frictionless labor markets. However, three prominent features of labor markets are:

1. substantial differences in workforce composition across firms;
2. variation in wages for workers with the same observed characteristics;
3. unemployment rate varies across industries (see BLS).
Labor Market Rigidities

There are substantial differences across countries in labor market rigidities

<table>
<thead>
<tr>
<th>Country</th>
<th>Difficulty of Hiring</th>
<th>Rigidity of Hours</th>
<th>Difficulty of Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Uganda</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rwanda</td>
<td>11</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>11</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Japan</td>
<td>11</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>OECD</td>
<td>27</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>Italy</td>
<td>33</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Mexico</td>
<td>33</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Russia</td>
<td>33</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Germany</td>
<td>33</td>
<td>53</td>
<td>40</td>
</tr>
<tr>
<td>France</td>
<td>67</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Spain</td>
<td>78</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Morocco</td>
<td>89</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

Member states of the European Union have focused on labor market policies for more than a decade.
The European Context

- Member states of the European Union have focused on labor market policies for more than a decade.
Member states of the European Union have focused on labor market policies for more than a decade.

It lead to the European Employment Strategy, which was incorporated into the broader Lisbon Strategy, designed to turn Europe into a more competitive and dynamic economy, with more and better jobs.
Member states of the European Union have focused on labor market policies for more than a decade.

- It lead to the European Employment Strategy, which was incorporated into the broader Lisbon Strategy, designed to turn Europe into a more competitive and dynamic economy, with more and better jobs.

- To think about such issues, we need theoretical models that pay careful attention to features of labor markets.
Member states of the European Union have focused on labor market policies for more than a decade.

- It lead to the European Employment Strategy, which was incorporated into the broader Lisbon Strategy, designed to turn Europe into a more competitive and dynamic economy, with more and better jobs.

- To think about such issues, we need theoretical models that pay careful attention to features of labor markets.

- And we need to understand how labor market policies in one country affect its trade partners.
Main Issues

- Much of my work with Oleg Itskhoki and Steve Redding, and more recently with Marc Muendler, has focused on the following questions:

 1. what is the impact of trade on inequality and unemployment?
 2. what are the impacts of one country’s labor market frictions and policies on its trade partners?
 3. how does the removal of trade impediments impact countries with different labor market frictions?
Much of my work with Oleg Itskhoki and Steve Redding, and more recently with Marc Muendler, has focused on the following questions:

1. what is the impact of trade on inequality and unemployment?
Main Issues

Much of my work with Oleg Itskhoki and Steve Redding, and more recently with Marc Muendler, has focused on the following questions:

1. what is the impact of trade on inequality and unemployment?
2. what are the impacts of one country’s labor market frictions and policies on its trade partners?
Main Issues

Much of my work with Oleg Itskhoki and Steve Redding, and more recently with Marc Muendler, has focused on the following questions:

1. what is the impact of trade on inequality and unemployment?
2. what are the impacts of one country’s labor market frictions and policies on its trade partners?
3. how does the removal of trade impediments impact countries with different labor market frictions?
There is a large literature on trade and labor market frictions:
There is a large literature on trade and labor market frictions:

- minimum wages, Brecher (1974);
There is a large literature on trade and labor market frictions:

- minimum wages, Brecher (1974);
- implicit contracts, Matusz (1986);
There is a large literature on trade and labor market frictions:

- minimum wages, Brecher (1974);
- implicit contracts, Matusz (1986);
- efficiency wages, Copeland (1989);
There is a large literature on trade and labor market frictions:

- minimum wages, Brecher (1974);
- implicit contracts, Matusz (1986);
- efficiency wages, Copeland (1989);
- fair wages, Agell and Lundborg (1995) and Kreickemeier and Nelson (2006);
- search and matching, Davidson, Martin and Matusz (1988, 1999);
- volatility and labor immobility, Cuñat and Melitz (2010).
There is a large literature on trade and labor market frictions:

- minimum wages, Brecher (1974);
- implicit contracts, Matusz (1986);
- efficiency wages, Copeland (1989);
- fair wages, Agell and Lundborg (1995) and Kreickemeier and Nelson (2006);
- search and matching, Davidson, Martin and Matusz (1988,1999);
There is a large literature on trade and labor market frictions:

- minimum wages, Brecher (1974);
- implicit contracts, Matusz (1986);
- efficiency wages, Copeland (1989);
- fair wages, Agell and Lundborg (1995) and Kreickemeier and Nelson (2006);
- search and matching, Davidson, Martin and Matusz (1988, 1999);
- volatility and labor immobility, Cuñat and Melitz (2010).
There is a large literature on trade and labor market frictions:

- minimum wages, Brecher (1974);
- implicit contracts, Matusz (1986);
- efficiency wages, Copeland (1989);
- fair wages, Agell and Lundborg (1995) and Kreickemeier and Nelson (2006);
- search and matching, Davidson, Martin and Matusz (1988, 1999);
- volatility and labor immobility, Cuñat and Melitz (2010).

More recently, a surge of papers incorporating labor market frictions into models with heterogeneous firms:
There is a large literature on trade and labor market frictions:

- minimum wages, Brecher (1974);
- implicit contracts, Matusz (1986);
- efficiency wages, Copeland (1989);
- fair wages, Agell and Lundborg (1995) and Kreickemeier and Nelson (2006);
- search and matching, Davidson, Martin and Matusz (1988,1999);
- volatility and labor immobility, Cuñat and Melitz (2010).

More recently, a surge of papers incorporating labor market frictions into models with heterogeneous firms:

- fair wages, Egger and Kreickemeier (2006), Amiti and Davis (2010);
Related Literature

- There is a large literature on trade and labor market frictions:
 - minimum wages, Brecher (1974);
 - implicit contracts, Matusz (1986);
 - efficiency wages, Copeland (1989);
 - fair wages, Agell and Lundborg (1995) and Kreickemeier and Nelson (2006);
 - search and matching, Davidson, Martin and Matusz (1988, 1999);
 - volatility and labor immobility, Cuñat and Melitz (2010).

- More recently, a surge of papers incorporating labor market frictions into models with heterogeneous firms:
 - fair wages, Egger and Kreickemeier (2006), Amiti and Davis (2010);
 - efficiency wages, Davis and Harrigan (2011);
There is a large literature on trade and labor market frictions:

- minimum wages, Brecher (1974);
- implicit contracts, Matusz (1986);
- efficiency wages, Copeland (1989);
- fair wages, Agell and Lundborg (1995) and Kreickemeier and Nelson (2006);
- search and matching, Davidson, Martin and Matusz (1988, 1999);
- volatility and labor immobility, Cuñat and Melitz (2010).

More recently, a surge of papers incorporating labor market frictions into models with heterogeneous firms:

- fair wages, Egger and Kreickemeier (2006), Amiti and Davis (2010);
- efficiency wages, Davis and Harrigan (2011);
An examination of the link between trade and inequality requires new thinking; Stoper-Samuelson effects fail to provide an adequate explanation of inequality trends around the globe (putting aside the Technology vs Trade debate).
An examination of the link between trade and inequality requires new thinking; Stopler-Samuelson effects fail to provide an adequate explanation of inequality trends around the globe (putting aside the Technology vs Trade debate).

Trade liberalization raises wage inequality in developed and developing countries, Goldberg and Pavcnik (2007).
An examination of the link between trade and inequality requires new thinking; Stopler-Samuelson effects fail to provide an adequate explanation of inequality trends around the globe (putting aside the Technology vs Trade debate).

Trade liberalization raises wage inequality in developed and developing countries, Goldberg and Pavcnik (2007).

Residual Inequality: within sectors

Note: Decomposition of the residuals from a Mincer regression of log wages on, education, demographics and experience. Difference from 1986 value.
Residual Inequality: within occupations

Residual wage inequality decomposition (occupations)

Note: Decomposition of the residuals from a Mincer regression of log wages on, education, demographics and experience. Difference from 1986 value.
Our view: the large role of within group inequality is related to selection of firms into exporting, and selection of workers based on some dimension of heterogeneity.
Our view: the large role of within group inequality is related to selection of firms into exporting, and selection of workers based on some dimension of heterogeneity.

Consider a differentiated-product sector:
Our view: the large role of within group inequality is related to selection of firms into exporting, and selection of workers based on some dimension of heterogeneity.

Consider a differentiated-product sector:

- brands are produced by heterogeneous firms, which differ in productivity;
Our view: the large role of within group inequality is related to selection of firms into exporting, and selection of workers based on some dimension of heterogeneity.

Consider a differentiated-product sector:

- brands are produced by heterogeneous firms, which differ in productivity;
- fixed entry and production costs, fixed and variable trade costs;
Our view: the large role of within group inequality is related to selection of firms into exporting, and selection of workers based on some dimension of heterogeneity.

Consider a differentiated-product sector:

- brands are produced by heterogeneous firms, which differ in productivity;
- fixed entry and production costs, fixed and variable trade costs;
- monopolistic competition in the product market;
- wage bargaining.
Our view: the large role of within group inequality is related to selection of firms into exporting, and selection of workers based on some dimension of heterogeneity.

Consider a differentiated-product sector:

- brands are produced by heterogeneous firms, which differ in productivity;
- fixed entry and production costs, fixed and variable trade costs;
- monopolistic competition in the product market;
- search and matching in the labor market;
Framework

Our view: the large role of within group inequality is related to selection of firms into exporting, and selection of workers based on some dimension of heterogeneity.

Consider a differentiated-product sector:

- brands are produced by heterogeneous firms, which differ in productivity;
- fixed entry and production costs, fixed and variable trade costs;
- monopolistic competition in the product market;
- search and matching in the labor market;
- wage bargaining.
Our view: the large role of within group inequality is related to selection of firms into exporting, and selection of workers based on some dimension of heterogeneity.

Consider a differentiated-product sector:

- brands are produced by heterogeneous firms, which differ in productivity;
- fixed entry and production costs, fixed and variable trade costs;
- monopolistic competition in the product market;
- search and matching in the labor market;
- wage bargaining.

Preferences are CES.
Heterogeneity

- Workers are homogeneous *ex ante*, but draw an ability a which is match-specific in the differentiated sector.
Heterogeneity

- Workers are homogeneous *ex ante*, but draw an ability a which is match-specific in the differentiated sector.
- The ability a is observed neither by the worker nor by the firm.
Workers are homogeneous *ex ante*, but draw an ability a which is match-specific in the differentiated sector.

The ability a is observed neither by the worker nor by the firm.

Firms are homogeneous *ex ante*, but draw a productivity θ upon entry in the differentiated sector.
Workers are homogeneous ex ante, but draw an ability a which is match-specific in the differentiated sector.

The ability a is observed neither by the worker nor by the firm.

Firms are homogeneous ex ante, but draw a productivity θ upon entry in the differentiated sector.

Production: the production function is:

$$y = \theta h^\gamma \bar{a}, \quad 0 < \gamma < 1,$$

(interpretation: human capital externalities or fixed managerial time at the level of the firm).
Heterogeneity

- Workers are homogeneous *ex ante*, but draw an ability a which is match-specific in the differentiated sector.
- The ability a is observed neither by the worker nor by the firm.
- Firms are homogeneous *ex ante*, but draw a productivity θ upon entry in the differentiated sector.
- **Production**: the production function is:

 $$y = \theta h^{\gamma} a, \quad 0 < \gamma < 1,$$

 (interpretation: human capital externalities or fixed managerial time at the level of the firm).
- **Screening**: a firm can identify workers with productivity above a_c at cost.
Workers are homogeneous \textit{ex ante}, but draw an ability a which is match-specific in the differentiated sector.

The ability a is observed neither by the worker nor by the firm.

Firms are homogeneous \textit{ex ante}, but draw a productivity θ upon entry in the differentiated sector.

\textbf{Production}: the production function is:

$$y = \theta h^{\gamma} \bar{a}, \quad 0 < \gamma < 1,$$

(interpretation: human capital externalities or fixed managerial time at the level of the firm).

\textbf{Screening}: a firm can identify workers with productivity above a_c at cost.

Firm productivity and worker ability are distributed Pareto.
There is a Cobb-Douglas matching function.
There is a Cobb-Douglas matching function. It yields a cost of hiring:

\[b = \zeta x^\alpha. \]
There is a Cobb-Douglas matching function. It yields a cost of hiring:

\[b = \xi x^\alpha. \]

\(\xi \) is a parameter, rising in the cost of posting vacancies and declining in the Hicks-neutral efficiency of the matching process;
There is a Cobb-Douglas matching function. It yields a **cost of hiring**:

\[b = \zeta x^\alpha. \]

- \(\zeta \) is a parameter, rising in the cost of posting vacancies and declining in the Hicks-neutral efficiency of the matching process;
- \(\alpha \) is the ratio of the Cobb-Douglas coefficients on labor and vacancies;
There is a Cobb-Douglas matching function. It yields a **cost of hiring**:

\[b = \bar{\zeta} x^\alpha. \]

\(\bar{\zeta} \) is a parameter, rising in the cost of posting vacancies and declining in the Hicks-neutral efficiency of the matching process;

\(\alpha \) is the ratio of the Cobb-Douglas coefficients on labor and vacancies;

\(x = N/L \) is the ratio of the number of matched workers to the number of searching workers; our measure of tightness in the labor market.
It is possible to obtain closed-form solutions for all the firm-specific variables, and use these solutions to calculate the wage distribution.
It is possible to obtain closed-form solutions for all the firm-specific variables, and use these solutions to calculate the wage distribution.

Firms select into exporting, as in Melitz (2003):

- More productive firms:
 1. Post more vacancies;
 2. Match with more workers;
 3. Screen to higher ability cutoffs;
 4. Employ more workers;
 5. Pay higher wages (because they have workforces of higher average ability).
It is possible to obtain closed-form solutions for all the firm-specific variables, and use these solutions to calculate the wage distribution.

Firms select into exporting, as in Melitz (2003):

\[
\begin{align*}
0 & \quad \theta_d & \quad \theta_x \\
exit & \quad serve only the domestic market & \quad serve the domestic market and export
\end{align*}
\]

More productive firms:
It is possible to obtain closed-form solutions for all the firm-specific variables, and use these solutions to calculate the wage distribution.

Firms select into exporting, as in Melitz (2003):

- More productive firms:
 - post more vacancies;

\[
\theta_d \quad \theta_x
\]

serve only the domestic market
serve the domestic market and export
It is possible to obtain closed-form solutions for all the firm-specific variables, and use these solutions to calculate the wage distribution.

Firms select into exporting, as in Melitz (2003):

- More productive firms:
 1. post more vacancies;
 2. match with more workers;
It is possible to obtain closed-form solutions for all the firm-specific variables, and use these solutions to calculate the wage distribution.

Firms select into exporting, as in Melitz (2003):

- More productive firms:
 1. post more vacancies;
 2. match with more workers;
 3. screen to higher ability cutoffs;
Equilibrium Structure

- It is possible to obtain closed-form solutions for all the firm-specific variables, and use these solutions to calculate the wage distribution.
- Firms select into exporting, as in Melitz (2003):

\[
\begin{align*}
\theta & \quad \text{exit marketdomestic} \\
\theta_d & \quad \text{serve only the domestic market} \\
\theta_x & \quad \text{serve the domestic market and export}
\end{align*}
\]

- More productive firms:
 1. post more vacancies;
 2. match with more workers;
 3. screen to higher ability cutoffs;
 4. employ more workers;
It is possible to obtain closed-form solutions for all the firm-specific variables, and use these solutions to calculate the wage distribution.

Firms select into exporting, as in Melitz (2003):

More productive firms:
1. post more vacancies;
2. match with more workers;
3. screen to higher ability cutoffs;
4. employ more workers;
5. pay higher wages (because they have workforces of higher average ability);
Wages

Productivity, θ

Wage Rate, $w(\theta)$

$w^c(\theta)$

$w(\theta)$

θ_d

θ_x

[Graph showing wage rate and productivity relationship]
Inequality of Wages

\[\mu \text{-} \ln(1 + \mu) \]

Trade Openness, \(\rho = \frac{\theta_d}{\theta_x} \)
Consider a simplified version of this model, with no worker heterogeneity and no screening.
Consider a simplified version of this model, with no worker heterogeneity and no screening.

There are two sectors, one as above, the other produces homogenous goods with one unit of labor per unit output and no trade costs.
Consider a simplified version of this model, with no worker heterogeneity and no screening.

There are two sectors, one as above, the other produces homogenous goods with one unit of labor per unit output and no trade costs.

Labor market frictions in the homogeneous sector are similar to the differentiated sector, except that \(\zeta \) can be different.
Interdependence

- Consider a simplified version of this model, with no worker heterogeneity and no screening.
- There are two sectors, one as above, the other produces homogenous goods with one unit of labor per unit output and no trade costs.
- Labor market frictions in the homogeneous sector are similar to the differentiated sector, except that ζ can be different.
- Preferences are quasi-linear:

$$U = q_0 + \frac{1}{\zeta} Q^\zeta, \quad \zeta < \beta < 1.$$
• Consider a simplified version of this model, with no worker heterogeneity and no screening.

• There are two sectors, one as above, the other produces homogenous goods with one unit of labor per unit output and no trade costs.

• Labor market frictions in the homogeneous sector are similar to the differentiated sector, except that ξ can be different.

• Preferences are quasi-linear:

$$U = q_0 + \frac{1}{\zeta} Q^\zeta, \quad \zeta < \beta < 1.$$

• There are two countries, A and B, that differ only in labor market frictions.
Consider a simplified version of this model, with no worker heterogeneity and no screening.

There are two sectors, one as above, the other produces homogenous goods with one unit of labor per unit output and no trade costs.

Labor market frictions in the homogeneous sector are similar to the differentiated sector, except that ξ can be different.

Preferences are quasi-linear:

$$U = q_0 + \frac{1}{\zeta} Q^{\zeta}, \quad \zeta < \beta < 1.$$

There are two countries, A and B, that differ only in labor market frictions.

Assume $b_A > b_B$, i.e., labor market frictions in the differentiated sector are relatively larger in country A.
A larger fraction of differentiated-sector firms export in country B.
A larger fraction of differentiated-sector firms export in country B.

Country B exports differentiated products on net and imports homogeneous goods.
A larger fraction of differentiated-sector firms export in country B.

Country B exports differentiated products on net and imports homogeneous goods.

Both countries gain from trade.
A larger fraction of differentiated-sector firms export in country B.

Country B exports differentiated products on net and imports homogeneous goods.

Both countries gain from trade.

A reduction in ξ_j \(\longrightarrow\) reduction in b_j raises j’s welfare and reduces the welfare of its trade partner.

A simultaneous proportional reduction in ξ_A and ξ_B raises welfare in both countries.

A reduction of trade impediments raises welfare in both countries.
A larger fraction of differentiated-sector firms export in country B.

Country B exports differentiated products on net and imports homogeneous goods.

Both countries gain from trade.

A reduction in $\tilde{\xi}_j$ (reduction in b_j) raises j’s welfare and reduces the welfare of its trade partner.

A simultaneous proportional reduction in $\tilde{\xi}_A$ and $\tilde{\xi}_B$ raises welfare in both countries.
A larger fraction of differentiated-sector firms export in country B.
Country B exports differentiated products on net and imports homogeneous goods.
Both countries gain from trade.
A reduction in ξ_j (\rightarrow reduction in b_j) raises j’s welfare and reduces the welfare of its trade partner.
A simultaneous proportional reduction in ξ_A and ξ_B raises welfare in both countries.
A reduction of trade impediments raises welfare in both countries.
The rate of unemployment is a weighted average of sectoral rates of unemployment.
Unemployment

- The rate of unemployment is a weighted average of sectoral rates of unemployment.
- Variation in b_A and τ:
Unemployment Benefits

- The cost of hiring workers changes with unemployment benefits, and the cost of hiring impacts welfare of both countries.
Unemployment Benefits

- The cost of hiring workers changes with unemployment benefits, and the cost of hiring impacts welfare of both countries.
- This raises two questions:

\[
 b_j = \xi_j x_{\alpha_j} + \lambda_1 + \lambda b_{uj}.
\]

\(b_{uj}\) raises \(b_j\) directly, and reduces \(b_j\) indirectly via the decline of \(x_{\alpha_j}\).
Unemployment Benefits

- The cost of hiring workers changes with unemployment benefits, and the cost of hiring impacts welfare of both countries.
- This raises two questions:
 - Is it beneficial to have unemployment benefits?
The cost of hiring workers changes with unemployment benefits, and the cost of hiring impacts welfare of both countries.

This raises two questions:

- Is it beneficial to have unemployment benefits?
- How do unemployment benefits in a country impact its trade partner?
The cost of hiring workers changes with unemployment benefits, and the cost of hiring impacts welfare of both countries.

This raises two questions:

- Is it beneficial to have unemployment benefits?
- How do unemployment benefits in a country impact its trade partner?

Unemployment benefits affect wages, because they increase the outside option of workers at the bargaining stage. And they impact the decision of a worker to search for a job in the homogeneous or differentiated sector.
The cost of hiring workers changes with unemployment benefits, and the cost of hiring impacts welfare of both countries.

This raises two questions:

- Is it beneficial to have unemployment benefits?
- How do unemployment benefits in a country impact its trade partner?

Unemployment benefits affect wages, because they increase the outside option of workers at the bargaining stage. And they impact the decision of a worker to search for a job in the homogeneous or differentiated sector.

Now the relevant definition is (λ is the relative bargaining weight of employers):

$$b_j = \tilde{\xi}_j x_j^\alpha + \frac{\lambda}{1 + \lambda} b_{uj}. $$
The cost of hiring workers changes with unemployment benefits, and the cost of hiring impacts welfare of both countries.

This raises two questions:

- Is it beneficial to have unemployment benefits?
- How do unemployment benefits in a country impact its trade partner?

Unemployment benefits affect wages, because they increase the outside option of workers at the bargaining stage. And they impact the decision of a worker to search for a job in the homogeneous or differentiated sector.

Now the relevant definition is (λ is the relative bargaining weight of employers):

\[b_j = \xi_j x_j^\alpha + \frac{\lambda}{1 + \lambda} b_{uj}. \]

- \(b_{uj} \) raises \(b_j \) directly, and reduces \(b_j \) indirectly via the decline of \(x_j \).
The equilibrium conditions imply that b_j is increasing in unemployment benefits if and only if $\xi_0j > \xi_j$.
The equilibrium conditions imply that b_j is increasing in unemployment benefits if and only if $\xi_0j > \xi_j$.

Interdependence: The foreign country gains from j’s unemployment benefits if and only if $\xi_0j > \xi_j$.
The equilibrium conditions imply that b_j is increasing in unemployment benefits if and only if $\xi_{0j} > \xi_j$.

Interdependence: The foreign country gains from j’s unemployment benefits if and only if $\xi_{0j} > \xi_j$.

Own effect: Country j may gain or lose from unemployment benefits; impact Q, ω, and tax burden T:

![Graph showing the impact of unemployment benefits on welfare gains](image-url)
Consider a constrained optimum that maximizes joint welfare of the two countries subject to the constraint that labor is allocated to firms via the matching technology.
Consider a constrained optimum that maximizes joint welfare of the two countries subject to the constraint that labor is allocated to firms via the matching technology.

What policies implement this allocation?
Consider a constrained optimum that maximizes joint welfare of the two countries subject to the constraint that labor is allocated to firms via the matching technology.

What policies implement this allocation?

In the market economy there are potential distortions in
Consider a constrained optimum that maximizes joint welfare of the two countries subject to the constraint that labor is allocated to firms via the matching technology.

What policies implement this allocation?

In the market economy there are potential distortions in

- labor markets (tightness need not be optimal);
Consider a constrained optimum that maximizes joint welfare of the two countries subject to the constraint that labor is allocated to firms via the matching technology.

What policies implement this allocation?

In the market economy there are potential distortions in

- labor markets (tightness need not be optimal);
- product markets (markups in the differentiated sectors);
Consider a constrained optimum that maximizes joint welfare of the two countries subject to the constraint that labor is allocated to firms via the matching technology.

What policies implement this allocation?

In the market economy there are potential distortions in

- labor markets (tightness need not be optimal);
- product markets (markups in the differentiated sectors);
- choice of entry in the differentiated sector;
Consider a constrained optimum that maximizes joint welfare of the two countries subject to the constraint that labor is allocated to firms via the matching technology.

What policies implement this allocation?

In the market economy there are potential distortions in

- labor markets (tightness need not be optimal);
- product markets (markups in the differentiated sectors);
- choice of entry in the differentiated sector;
- choice of exit in the differentiated sector;
Consider a constrained optimum that maximizes joint welfare of the two countries subject to the constraint that labor is allocated to firms via the matching technology.

What policies implement this allocation?

In the market economy there are potential distortions in

- labor markets (tightness need not be optimal);
- product markets (markups in the differentiated sectors);
- choice of entry in the differentiated sector;
- choice of exit in the differentiated sector;
- choice of exporting in the differentiated sector.
Consider a constrained optimum that maximizes joint welfare of the two countries subject to the constraint that labor is allocated to firms via the matching technology.

What policies implement this allocation?

In the market economy there are potential distortions in

- labor markets (tightness need not be optimal);
- product markets (markups in the differentiated sectors);
- choice of entry in the differentiated sector;
- choice of exit in the differentiated sector;
- choice of exporting in the differentiated sector.

A single policy instrument, such as unemployment benefits, cannot correct the labor market and product market distortions simultaneously.
No Labor Market Distortions

When the Hosios condition is satisfied, i.e., $\alpha \lambda = 1$, tightness is optimal in labor markets and no labor market policies are called for.
No Labor Market Distortions

- When the Hosios condition is satisfied, i.e., $\alpha \lambda = 1$, tightness is optimal in labor markets and no labor market policies are called for.
 - The Hosios condition also applies to our multilateral bargaining game.
No Labor Market Distortions

- When the Hosios condition is satisfied, i.e., $\alpha \lambda = 1$, tightness is optimal in labor markets and no labor market policies are called for.
 - The Hosios condition also applies to our multilateral bargaining game.
- Under these circumstances optimal policies are:

$$s_o = \beta \beta (1 + \alpha)$$
$$s_f = \alpha 1 + \alpha$$
When the Hosios condition is satisfied, i.e., $\alpha \lambda = 1$, tightness is optimal in labor markets and no labor market policies are called for.

- The Hosios condition also applies to our multilateral bargaining game.

Under these circumstances optimal policies are:

- ad valorem output subsidy (β controls the elasticity of substitution across brands):
 \[s_o = \frac{1 - \beta}{\beta (1 + \alpha)}, \]
 does not differentiate between exporters and nonexporters;
When the Hosios condition is satisfied, i.e., \(\alpha \lambda = 1 \), tightness is optimal in labor markets and no labor market policies are called for.

The Hosios condition also applies to our multilateral bargaining game.

Under these circumstances optimal policies are:

- Ad valorem output subsidy (\(\beta \) controls the elasticity of substitution across brands):
 \[
 s_o = \frac{1 - \beta}{\beta (1 + \alpha)},
 \]
 does not differentiate between exporters and nonexporters;

- The same ad valorem subsidy to all fixed costs (entry, production, export):
 \[
 s_f = \frac{\alpha}{1 + \alpha}.
 \]
Labor Market Distortions

Let $\alpha \lambda \neq 1$. Then a number of labor market policies can be used to secure optimal tightness. In particular:

- Subsidies to posting vacancies or to the cost of hiring, are the most direct: $s_b = 1 + \lambda$.

- Unemployment benefits, which work only if $\alpha \lambda > 1$: $b_u = \alpha \lambda (1 + \alpha \lambda)$.

- The remaining optimal policies are ad valorem output subsidies and subsidies to fixed costs; with the details depending on whether s_b or b_u is used in the labor market.

If the optimal s_b is used in the labor market, then:

- $s_o = (1 - \beta) \lambda (1 + \lambda)$,
- $s_f = 1 + \lambda$.

This requires less information than the policies with b_u; the latter also requires knowledge of ξ_0 and ξ_1.
Labor Market Distortions

Let $\alpha \lambda \neq 1$. Then a number of labor market policies can be used to secure optimal tightness. In particular:

- subsidies to posting vacancies or to the cost of hiring, are the most direct:

$$s_b = \frac{1 - \alpha \lambda}{1 + \lambda} \geq 0;$$

- unemployment benefits, which work only if $\alpha \lambda > 1$:

$$b_u = \alpha \lambda \frac{\lambda}{1 + \lambda}.$$

The remaining optimal policies are ad valorem output subsidies and subsidies to fixed costs; with the details depending on whether s_b or b_u is used in the labor market.

If the optimal s_b is used in the labor market, then:

$$s_o = (1 - \beta) \lambda \beta (1 + \lambda),$$

$$s_f = \frac{1}{1 + \lambda}.$$

This requires less information than the policies with b_u; the latter also requires knowledge of ξ_0 and ξ.
Let $\alpha \lambda \neq 1$. Then a number of labor market policies can be used to secure optimal tightness. In particular:

- subsidies to posting vacancies or to the cost of hiring, are the most direct:

 \[s_b = \frac{1 - \alpha \lambda}{1 + \lambda} \geq 0; \]

- unemployment benefits, which work only if $\alpha \lambda > 1$:

 \[b_u = \frac{\alpha \lambda - 1}{(1 + \alpha) \lambda}. \]
Let $\alpha \lambda \neq 1$. Then a number of labor market policies can be used to secure optimal tightness. In particular:

- subsidies to posting vacancies or to the cost of hiring, are the most direct:
 $$s_b = \frac{1 - \alpha \lambda}{1 + \lambda} \geq 0;$$

- unemployment benefits, which work only if $\alpha \lambda > 1$:
 $$b_u = \frac{\alpha \lambda - 1}{(1 + \alpha) \lambda}.$$

The remaining optimal polices are ad valorem output subsidies and subsidies to fixed costs; with the details depending on whether s_b or b_u is used in the labor market.
Let $\alpha \lambda \neq 1$. Then a number of labor market policies can be used to secure optimal tightness. In particular:

- subsidies to posting vacancies or to the cost of hiring, are the most direct:
 \[s_b = \frac{1 - \alpha \lambda}{1 + \lambda} \geq 0; \]
- unemployment benefits, which work only if $\alpha \lambda > 1$:
 \[b_u = \frac{\alpha \lambda - 1}{(1 + \alpha) \lambda}. \]

The remaining optimal polices are ad valorem output subsidies and subsidies to fixed costs; with the details depending on whether s_b or b_u is used in the labor market.

If the optimal s_b is used in the labor market, then:

\[s_o = \frac{(1 - \beta) \lambda}{\beta (1 + \lambda)}, \quad s_f = \frac{1}{1 + \lambda}. \]
Let $\alpha \lambda \neq 1$. Then a number of labor market policies can be used to secure optimal tightness. In particular:

- subsidies to posting vacancies or to the cost of hiring, are the most direct:
 \[s_b = \frac{1 - \alpha \lambda}{1 + \lambda} \geq 0; \]

- unemployment benefits, which work only if $\alpha \lambda > 1$:
 \[b_u = \frac{\alpha \lambda - 1}{(1 + \alpha) \lambda}. \]

The remaining optimal polices are ad valorem output subsidies and subsidies to fixed costs; with the details depending on whether s_b or b_u is used in the labor market.

- If the optimal s_b is used in the labor market, then:
 \[s_o = \frac{(1 - \beta) \lambda}{\beta (1 + \lambda)}, \quad s_f = \frac{1}{1 + \lambda}. \]

This requires less information than the policies with b_u; the latter also requires knowledge of ξ_0 and ξ.
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
- In our model increased wage inequality due to unobserved worker heterogeneity may result from:
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
- In our model increased wage inequality due to unobserved worker heterogeneity may result from:
 - technological change that increases the dispersion of firm productivity;
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
- In our model increased wage inequality due to unobserved worker heterogeneity may result from:
 - technological change that increases the dispersion of firm productivity;
 - declining costs of international trade.
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
- In our model increased wage inequality due to unobserved worker heterogeneity may result from:
 - technological change that increases the dispersion of firm productivity;
 - declining costs of international trade.
- As a single policy instrument, unemployment benefits can be beneficial or detrimental.
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
- In our model increased wage inequality due to unobserved worker heterogeneity may result from:
 - technological change that increases the dispersion of firm productivity;
 - declining costs of international trade.
- As a single policy instrument, unemployment benefits can be beneficial or detrimental.
 - If beneficial, there exists an optimal level of unemployment benefits.
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
- In our model increased wage inequality due to unobserved worker heterogeneity may result from:
 - technological change that increases the dispersion of firm productivity;
 - declining costs of international trade.
- As a single policy instrument, unemployment benefits can be beneficial or detrimental.
 - If beneficial, there exists an optimal level of unemployment benefits.
- There exists a simple set of policies that support a constrained Pareto optimum, of which unemployment benefits can be a useful instrument under some circumstances.
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
- In our model increased wage inequality due to unobserved worker heterogeneity may result from:
 - technological change that increases the dispersion of firm productivity;
 - declining costs of international trade.
- As a single policy instrument, unemployment benefits can be beneficial or detrimental.
 - If beneficial, there exists an optimal level of unemployment benefits.
- There exists a simple set of policies that support a constrained Pareto optimum, of which unemployment benefits can be a useful instrument under some circumstances.
- Generalizing macro models to include trade and multiple sectors is useful for assessing active labor market policies:
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
- In our model increased wage inequality due to unobserved worker heterogeneity may result from:
 - technological change that increases the dispersion of firm productivity;
 - declining costs of international trade.
- As a single policy instrument, unemployment benefits can be beneficial or detrimental.
 - If beneficial, there exists an optimal level of unemployment benefits.
- There exists a simple set of policies that support a constrained Pareto optimum, of which unemployment benefits can be a useful instrument under some circumstances.
- Generalizing macro models to include trade and multiple sectors is useful for assessing active labor market policies:
 - interdependence across countries implies that a country's labor market policies affect its trade partners;
Concluding Remarks

- Differences in labor market frictions can be a source of comparative advantage.
- In our model increased wage inequality due to unobserved worker heterogeneity may result from:
 - technological change that increases the dispersion of firm productivity;
 - declining costs of international trade.
- As a single policy instrument, unemployment benefits can be beneficial or detrimental.
 - If beneficial, there exists an optimal level of unemployment benefits.
- There exists a simple set of policies that support a constrained Pareto optimum, of which unemployment benefits can be a useful instrument under some circumstances.
- Generalizing macro models to include trade and multiple sectors is useful for assessing active labor market policies:
 - interdependence across countries implies that a country’s labor market policies affect its trade partners;
 - independent labor market policies can lead to prisoner dilemma type situations, and therefore there exist potential gains from coordination of labor market policies.