Trade, Firms and Employment

September 2009

Stephen J. Redding, Yale/LSE & CEPR Peter K. Schott, Yale SOM & NBER

Outline

- Traditional models of international trade
- The empirical challenge of "stylized facts" from plant and firm-level data
- Theoretical models to meet this empirical challenge
- Current and future research

Inter-Industry Trade

- Prediction:
 - Countries export some industries, import others
- However:
 - In many industries we see both exporting and importing
 - Within industries, some firms export while many others do not

Intra-Industry Trade

• Prediction:

- Firms specialize in different varieties which are exported and imported within the same industry
- However:
 - Some firms export and many others do not
 - Some country pairs trade and many others do not

Challenge 1: Producer Heterogeneity

- There is vast heterogeneity across plants and firms
 - Productivity, capital intensity, skill intensity, etc.
- Heterogeneity within industries is often as large as heterogeneity across industries

Plant Heterogeneity

(Bernard, Eaton, Jensen and Kortum 2003)

TABLE 2—PLANT-LEVEL PRODUCTIVITY FACTS

Productivity measure (value added per worker)	Variability (standard deviation of log productivity)	Advantage of exporters (exporter less nonexporter average log productivity, percent)
Unconditional	0.75	33
Within 4-digit industries	0.66	15
Within capital-intensity bins	0.67	20
Within production labor-share bins	0.73	25
Within industries (capital bins)	0.60	9
Within industries (production labor bins)	0.64	11

Notes: The statistics are calculated from all plants in the 1992 Census of Manufactures. The "within" measures subtract the mean value of log productivity for each category. There are 450 4-digit industries, 500 capital-intensity bins (based on total assets per worker), 500 production labor-share bins (based on payments to production workers as a share of total labor cost). When appearing within industries there are 10 capital-intensity bins or 10 production labor-share bins.

Challenge 2: Excess Reallocation

- There is ongoing job creation and job destruction in all industries
- The net change in industry employment is small relative to the total amount of job creation and destruction
- There are reallocations of resources within industries (across firms) as well as between industries

Job Creation and Destruction

	Job	Job Job		Net Employment	
Year	Creation	Destruction	Reallocation	Growth	
1973	11.9	6.1	18.0	5.7	
1974	9.0	9.3	18.3	-0.3	
1975	6.2	16.5	22.7	-10.3	
1976	11.2	9.4	20.6	1.8	
1977	11.0	8.6	19.6	2.3	
1978	10.9	7.3	18.2	3.6	
1979	10.3	7.0	17.4	3.3	
1980	8.0	9.1	17.1	-1.1	
1981	6.3	11.4	17.7	-5.4	
1982	6.8	14.5	21.3	-7.7	
1983	8.4	15.6	23.9	-7.2	
1984	13.3	7.6	20.9	5.7	
1985	7.9	11.1	19.0	-3.2	
1986	7.9	12.1	20.1	-4.2	
1987	8.4	10.1	18.5	-1.7	
1988	8.3	8.3	16.7	0.0	

Source: Davis, Haltiwanger and Schuh (1996)

Challenge 3: Trading is Rare

- Within industries, some firms export and many others do not
 - True for <u>both</u> net exporting and net importing industries
- Within industries, exporters are different
 - Larger, more productive, pay higher wages, etc.
- Multinationals are also larger and more productive than firms that serve only the domestic market

Exporting is Rare

(Bernard, Jensen, Redding and Schott 2007)

Exporter Frequency and Size, 2002 (Bernard, Jensen, Redding and Schott 2007)

				Mean	Mean	
			Percent of	Exports /	Capital	Mean Skill
		Percent of	Plants that	Shipments	Intensity	Intensity
NAIC	CS Industry	All Plants	Export	(%)	(\$000)	(%)
311	Food Manufacturing	8	15	15	87	33
312	Beverage and Tobacco Product	1	21	9	183	48
313	Textile Mills	1	27	14	92	21
314	Textile Product Mills	2	14	11	25	25
315	Apparel Manufacturing	3	8	14	16	21
316	Leather and Allied Product	0	24	15	23	23
321	Wood Product Manufacturing	5	10	17	58	20
322	Paper Manufacturing	2	28	9	142	26
323	Printing and Related Support	10	6	13	47	31
324	Petroleum and Coal Products	1	12	13	357	28
325	Chemical Manufacturing	4	35	16	322	39
326	Plastics and Rubber Products	5	30	11	78	24
327	Nonmetallic Mineral Product	6	9	13	113	23
331	Primary Metal Manufacturing	2	33	11	121	24
332	Fabricated Metal Product	18	16	12	56	27
333	Machinery Manufacturing	9	36	16	59	36
334	Computer and Electronic Product	5	40	23	64	47
335	Electrical Equipment, Appliance,	2	41	13	55	34
336	Transportation Equipment	4	34	14	71	26
337	Furniture and Related Product	5	8	9	25	24
339	Miscellaneous Manufacturing	8	2	15	32	33
Aggr	egate Manufacturing	100	20	15	77	29

Exporter Premia, 2002

(Bernard, Jensen, Redding and Schott 2007)

	(1)	(2)	(3)
Log Employment	1.20	0.91	
Log Shipments	1.53	1.05	0.11
Log Value Added per Worker	0.28	0.14	0.13
Log TFP	0.02	0.03	0.04
Log Wagebill	1.38	0.98	0.06
Log Capital per Worker	0.41	0.20	0.13
Log Skill per Worker	0.13	0.08	0.17
Additional Covariates	None	Industry Fixed Effects	Industry Fixed Effects, Employment

E.g., Exporters' TFP is on average 4 percent higher within industries after controlling for firm size

Challenge 4: Exporting → Productivity?

- Why are exporters more productive?
 - High productivity → Exporting?
 - Exporting → High Productivity?
- Strong evidence that good firm performance leads to exporting (selection)
 - US: Bernard and Jensen (1999)
 - o Taiwan: Aw, Chen and Roberts (2001)
- Mixed evidence on exporting leading to better firm performance (learning by exporting)
 - Columbia, Mexico and Morocco : Clerides, Lach and Tybout (1998) find little evidence

Challenge 5: Liberalization and Reallocation

- Trade liberalization results in exit by low-productivity firms and changes in industry composition as high-productivity firms expand to enter export markets
- E.g., Pavcnik (2002): 19.3 percent productivity growth in Chilean manufacturing during 1979-1986
 - o 6.6 percent from increased productivity within plants
 - 12.7 percent from reallocation of resources from less to more efficient producers

Outline of the Melitz (2003) Model

- Firms use labor to produce varieties of manufacturing good
- Firms enter a market by paying a sunk entry cost
- Firms observe their productivity j from a distribution g(φ)
- There is a fixed cost of producing and a fixed cost of exporting
- Firms decide whether to produce or exit the industry
- If firms produce, they decide whether to serve only the domestic market or also to export
- Exogenous probability of firm death

Profits and Productivity with no Trade

Trade Liberalization in the Melitz Model

Where are we now?

- The Melitz (2003) model meets many empirical challenges
 - Firm heterogeneity
 - Ongoing entry and exit of firms
 - Selection of the most productive firms into export markets
 - Increases in average industry productivity following trade liberalization due to exit by low productivity firms and expansion into export markets by high productivity firms
- But more needs to be done
 - Introduction of inter-industry trade?
 - Reallocation within firms (e.g. across products)?
 - Richer description of labor market?

Reallocation Within Firms

(Bernard, Jensen, Redding and Schott 2007)

Share of Exporting Firms

Number of	Number of Countries					
Products	1	2	3	4	5+	All
1	38.2	2.1	0.6	0.3	0.5	41.6
2	7.5	6.7	1.2	0.5	8.0	16.7
3	2.9	2.8	2.0	0.7	1.0	9.4
4	1.5	1.3	1.2	0.9	1.2	6.1
5+	4.0	2.8	2.6	2.5	14.2	26.2
All	54.2	15.7	7.7	4.8	17.7	100

Share of Export Value

Number of	Number of Countries					
Products	1	2	3	4	5+	All
1	0.2	0.1	0.0	0.0	0.2	0.5
2	0.2	0.2	0.0	0.1	0.2	0.7
3	0.1	0.1	0.1	0.1	0.3	0.7
4	0.1	0.1	0.1	0.1	0.4	0.7
5+	2.2	1.4	1.1	0.9	91.8	97.4
All	2.7	1.8	1.3	1.2	92.9	100

- Most exporting firms export relatively few products to relatively few countries
- Firms exporting many products to many destinations dominate U.S. exports
- Across firms, the number of products exported and the number of destination markets are positively correlated

Within-Firm Reallocation During Liberalization

(Bernard, Redding and Schott 2009)

- U.S. manufacturing firms experiencing above-median Canadian tariff reductions reduce the number of goods they produce relative to firms experiencing below-median reductions (Bernard, Redding and Schott 2009)
- Similar response among Canadian manufacturers (Baldwin and Gu 2009)

Labor Markets

- Melitz's (2003) labor market is highly stylized
 - Firms pay workers with the same characteristics the same wage irrespective of their productivity
 - To the extent that wages differ across firms, reallocations across firms within industries provide a new channel for the opening of trade to affect the distribution of income across workers

In fact

- Wage dispersion across firms within industries is linked to productivity dispersion (e.g. Davis and Haltiwanger 1991)
- Exporters and non-exporters pay different wages within industries (e.g., Bernard and Jensen 1995, 1997)
- Wage premia are linked to workforce composition (Kaplan and Verhoogen 2006, Munch and Skaksen 2008, Schank, Schnabel and Wagner 2007)
- Labor market frictions lead to unemployment (Petrongolo and Pissarides 2001)

Helpman, Itskhoki and Redding (2009)

- Asymmetric countries
- One heterogeneous factor of production: labor
- Melitz-type differentiated sector(s)
- Workers choose a sector to search for a job
- Worker are matched with firms
 - Diamond-Mortensen-Pissarides search and matching frictions
- Workers draw an unobserved match-specific productivity
- Firms screen workers to obtain information about match-specific ability
- Firms bargain with hired workers
- More productive firms
 - Screen more intensively to exclude low-ability workers
 - Have workforces of higher average ability
 - Pay higher wages
- Exporters pay higher wages than non-exporters for given productivity
 - Exporter wage premium

Wage Profiles Across Firms

Open Economy Versus Autarky

Trade Raises Wage Inequality

Non-monotonic relationship between trade and wage inequality

Thank You

References

- Aw, B. Y., M. Roberts and X. Chen (2001) "Firm-Level Evidence on Productivity Differentials and Turnover in Taiwanese Manufacturing," *Journal of Development Economics*, October. Bernard, A. B. and J. B. Jensen (1995) "Exporters, Jobs, and Wages in US Manufacturing: 1976-87," Brookings Papers on Economic Activity: Microeconomics, 67-112.
- Bernard, A. B. and J. B. Jensen (1999) "Exceptional Exporter Performance: Cause, Effect, or Both?'", Journal of International Economics, 47(1), 1-25.
- Bernard, A. B., J. Eaton, J. B. Jensen, and S. S. Kortum, (2003) "Plants and Productivity in International Trade," *American Economic Review*, 93(4), 1268-1290.
- Bernard, A. B., S. Redding and P. K. Schott (2007) "Comparative Advantage and Heterogeneous Firms," *Review of Economic Studies*, 73(1), 31-66.
- Bernard, A. B., S. Redding and P. K. Schott (2008) `Multi-Product Firms and Product Switching," *American Economic Review*, revise and resubmit.
- Clerides, S., S. Lach, and J. Tybout, (1998) "Is Learning by Exporting Important? Micro-Dynamic Evidence from Columbia, Mexico and Morocco," *Quarterly Journal of Economics*, 113, 903-47.
- Davis, S. J., Haltiwanger, J. and Schuh, S. (1996) *Job Creation and Job Destruction*, MIT Press.

References

Helpman, E., Melitz, M. J. and S. R. Yeaple (2004) "Export Versus FDI with Heterogeneous Firms," *American Economic Review*, 94(1), 300-16.

Helpman, E. Itskhoki, O. and S. Redding (2009) "Inequality and Unemployment in a Global Economy," London School of Economics, mimeograph.

Helpman, E. Itskhoki, O. and S. Redding (2009) "Unequal Effects of Trade on Workers with Different Abilities," paper prepared for the *Journal of the European Economic Association*, Papers and Proceedings.

Melitz, M. J. (2003) "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," *Econometrica*, 71, 1695-1725.

Pavcnik, N. (2002) "Trade Liberalization, Exit, and Productivity Improvement: Evidence from Chilean Plants," *Review of Economic Studies*, 69(1), 245-76.

Schott, P. K. (2004) "Across-Product versus Within-Product Specialization in International Trade," *Quarterly Journal of Economics*, 119(2), 647-678.