INJURIES AND NON-MALIGNANT DISEASES

 

Susan Kenndey, Kjell Toren

 

 

Injuries

Only limited statistics are available on accident rates in general in this industry. Compared to other manufacturing industries, the 1990 accident rate in Finland was below the average; in Canada, the rates from 1990 to 1994 were similar to other industries; in the United States, the 1988 rate was slightly above average; in Sweden and Germany, the rates were 25% and 70% above the average (ILO 1992; Workers’ Compensation Board of British Columbia 1995).

 

The most commonly encountered risk factors for serious and fatal accidents in the pulp and paper industry are the papermaking equipment itself and the extreme size and weight of pulp or paper bales and rolls. In a 1993 United States government study of occupational fatalities from 1979 to 1984 in pulp, paper and paperboard mills (US Department of Commerce 1993), 28% were due to workers being caught in or between rotating rolls or equipment (“nip-points”) and  18% were due to workers being crushed by falling or tumbling objects, especially rolls and bales. Other causes of multiple deaths included electrocution, hydrogen sulphide and other toxic gas inhalation, massive thermal/chemical burns and one case of heat exhaustion. The number of serious accidents associated with paper machines has been reported to decrease with the installation of newer equipment in some countries. In the converting sector, repetitive and monotonous work, and the use of mechanized equipment with higher speeds and forces, has become more common. Although no sector-specific data are available, it is expected that this sector will experience greater rates of over-exertion injuries associated with repetitive work.

 

Non-Malignant Diseases

The most well documented health problems encountered by pulp mill workers are acute and chronic respiratory disorders (Toren, Hagberg and Westberg 1996). Exposure to extremely high concentrations of chlorine, chlorine dioxide or sulphur dioxide may occur as a result of a leak or other process upset. Exposed workers may develop acute chemical-induced lung injury with severe inflammation of air passages and release of fluid into the air spaces, requiring hospitalization. The extent of damage depends on the duration and intensity of the exposure, and the specific gas involved. If the worker survives the acute episode, complete recovery may occur. However, in less intense exposure incidents (also usually as a result of process upsets or spills), acute exposure to chlorine or chlorine dioxide may trigger the subsequent development of asthma. This irritant-induced asthma has been recorded in numerous case reports and recent epidemiological studies, and current evidence indicates that it may persist for many years following the exposure incident. Workers similarly exposed who do not develop asthma may experience persistently increased nasal irritation, cough, wheezing and reduction in airflow rates. Workers most at risk for these exposure incidents include maintenance workers, bleach plant workers and construction workers at pulp mill sites. High levels of chlorine dioxide exposure also cause eye irritation and the sensation of seeing halos around lights.

 

Some mortality studies have indicated increased risk of death from respiratory disease among pulp mill workers exposed to sulphur dioxide and paper dust (Jappinen and Tola 1990; Toren, Jarvholm and Morgan 1989). Increased respiratory symptoms have also been reported in sulphite mill workers who are chronically exposed to low levels of sulphur dioxide (Skalpe 1964), although increased airflow obstruction is not normally reported among pulp mill populations in general. Symptoms of respiratory irritation are also reported by workers exposed to high air concentrations of terpenes in turpentine recovery processes often present at pulp mill sites. Soft paper dust has also been reported to be associated with increased asthma and chronic obstructive pulmonary disease (Toren, Hagberg and Westberg 1996).

 

Exposure to micro-organisms, especially around wood chip and waste piles, debarkers and sludge presses, creates an increased risk for hypersensitivity responses in the lungs. Evidence for this appears to be limited to isolated case reports of hypersensitivity pneumonitis, which can lead to chronic lung scarring. Bagassosis, or hypersensitivity pneumonitis associated with exposure to thermophylic micro-organisms and bagasse (a sugar cane by-product), is still seen in mills using bagasse for fibre.

 

Other respiratory hazards commonly encountered in the pulp and paper industry include stainless steel welding fumes and asbestos (see Asbestos", “Nickel” and “Chromium elsewhere in the Encyclopaedia). Maintenance workers are the group most likely to be at risk from these exposures.

 

Reduced sulphur compounds (including hydrogen sulphide, dimethyl disulphides and mercaptans) are potent eye irritants and may cause headaches and nausea in some workers. These compounds have very low odour thresholds (ppb range) in individuals not previously exposed; however, among long-time workers in the industry, odour thresholds are considerably higher. Concentrations in the range of 50 to 200 ppm produce olfactory fatigue, and subjects can no longer detect the distinctive “rotten eggs” odour. At higher concentrations, exposure will result in unconsciousness, respiratory paralysis and death. Fatalities associated with exposure to reduced sulphur compounds in confined spaces have occurred at pulp mill sites.

 

Cardiovascular mortality has been reported to be increased in pulp and paper workers, with some exposure-response evidence suggesting a possible link with exposure to reduced sulphur compounds (Jappinen 1987; Jappinen and Tola 1990). However, other causes for this increased mortality may include noise exposure and shift work, both of which have been associated with increased risk for ischaemic heart disease in other industries.

 

Skin problems encountered by pulp and paper mill workers include acute chemical and thermal burns and contact dermatitis (both irritant and allergic). Pulp mill workers in kraft process mills frequently experience alkali burns to the skin as a result of contact with hot pulping liquors and calcium hydroxide slurries from the recovery process. Contact dermatitis is reported more frequently among paper mill and converting workers, as many of the additives, defoaming agents, biocides, inks and glues used in paper and paper-product making are primary skin irritants and sensitizers. Dermatitis may occur from exposure to the chemicals themselves or from handling freshly treated paper or paper products.

 

Noise is a significant hazard throughout the pulp and paper industry. The US Department of Labor estimated that noise levels over 85 dBA were found in over 75% of plants in the paper and allied products industries, compared to 49% of plants in manufacturing in general, and that over 40% of workers were exposed regularly to noise levels over 85 dBA (US Department of Commerce 1983). Noise levels around paper machines, chippers and recovery boilers tend to be well over 90 dBA. Conversion operations also tend to generate high noise levels. Reduction in worker exposure around paper machines is usually attempted by the use of enclosed control rooms. In converting, where the operator is usually stationed next to the machine, this type of control measure is seldom used. However where converting machines have been enclosed, this has resulted in decreased exposure to both paper dust and noise.

 

Excessive heat exposure is encountered by paper mill workers working in paper machine areas, with temperatures of 60°C being recorded, although no studies of the effects of heat exposure in this population are available in the published scientific literature.